博客
关于我
邻域数、直接密度可达、密度可达、密度相连的概念
阅读量:753 次
发布时间:2019-03-23

本文共 479 字,大约阅读时间需要 1 分钟。

在实际应用中,P、M、Q、O、S、R等样本点之间存在密度可达关系,其中密度相连是对称的,而密度可达则不然。以下是详细分析:

  • P与M的关系:M是从P直接密度可达,这意味着M在P的密度区域中,且直接通过某些介质点连接。反之,从M到P的密度可达并不一定成立,因为密度可达具有非对称性。

  • Q与P的关系:Q是从P密度可达,但反之不然。说明Q位于P所在的密度区域之外,需要通过其他核心点或介质点间接连接到P。

  • S与O的关系:S是从O密度可达,类似于M与P的关系,说明S位于O的密度区域中,直接通过某些介质点连接。

  • R与O的关系:与S类似,R也是从O密度可达,说明R在O的密度区域中,通过某些足够的直接密度可达路径连接至O。

  • 值得注意的是:

    • ①直接密度可达和密度可达是不同的概念,且密度可达基于直接密度可达建立。
    • ②核心点的选择至关重要,因为它们定义了密度区域的边界。如果某点不在核心点,密度可达性可能会受到影响。

    通过上述分析,可以清晰地看出P-M、Q-P、S-O、R-O等密度关系,以及核心点在其中扮演的关键角色。理解这些关系对于后续的数据分析和应用开发具有重要意义。

    转载地址:http://keizk.baihongyu.com/

    你可能感兴趣的文章
    NI笔试——大数加法
    查看>>
    NLog 自定义字段 写入 oracle
    查看>>
    NLog类库使用探索——详解配置
    查看>>
    NLP 基于kashgari和BERT实现中文命名实体识别(NER)
    查看>>
    NLP 时事和见解【2023】
    查看>>
    NLP 模型中的偏差和公平性检测
    查看>>
    Vue3.0 性能提升主要是通过哪几方面体现的?
    查看>>
    NLP 项目:维基百科文章爬虫和分类【01】 - 语料库阅读器
    查看>>
    NLP_什么是统计语言模型_条件概率的链式法则_n元统计语言模型_马尔科夫链_数据稀疏(出现了词库中没有的词)_统计语言模型的平滑策略---人工智能工作笔记0035
    查看>>
    NLP、CV 很难入门?IBM 数据科学家带你梳理
    查看>>
    NLP三大特征抽取器:CNN、RNN与Transformer全面解析
    查看>>
    NLP入门(六)pyltp的介绍与使用
    查看>>
    NLP学习笔记:使用 Python 进行NLTK
    查看>>
    NLP度量指标BELU真的完美么?
    查看>>
    NLP的不同研究领域和最新发展的概述
    查看>>
    NLP的神经网络训练的新模式
    查看>>
    NLP采用Bert进行简单文本情感分类
    查看>>
    NLP问答系统:使用 Deepset SQUAD 和 SQuAD v2 度量评估
    查看>>
    NLP项目:维基百科文章爬虫和分类【02】 - 语料库转换管道
    查看>>
    NLP:从头开始的文本矢量化方法
    查看>>